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Abstract. The coupled Dim-Einstein equations for an open Robertson-Walker universe 
admit a discrete spectrum of non-singular recollapsing solunons with associated finite lifetimes. 
This spenrum can be classified by topological quantum numbers. and the lifetime is roughly 
proportional to these numbers. The rather complicated structure of the spectrum is due to the 
dynamics of the relative phase angle with respect to the positive and negative energy components 
of Dirac’s spinor field. The spectrum is characterized by a band structure: the phase angle 
remiins in each allowed band for a relatively long time but then suddenly jumps to another one. 

1. Introduction: Dirac-Einstein universe 

As an alternative to the well known inflation scenarios [l] for the early universe [2]. the 
Dirac-Einstein model [3-81 was recently established which is based upon the (minimal) 
coupling of Dirac’s equation 

CiyWVs$ = Mc$ (1) 

to Einstein’s equation 

for a homogeneous, isotropic universe 

ds’ = dt’ - R’{dr’ + sinh’r(d19’ + sin’ 0 dq’)} (3) 
(FRW universe [9]). The interesting point here is that the Dirac-Einstein model is in  
some sense ‘complementary’ to the inflation model, because it favours an open, oscillating 
universe with negative cosmological constant (1, < 0) [5]. In contrast to this, the 
idea of inflation is based upon apat ,  exponentially growing universe implying a posirive 
cosmological constant. In the present paper, we restrict ourselves to the purely mathematical 
side of the problem, which is interesting in itself, and we will obtain new solutions of the 
Dirac-Einstein equations (1)-(3), the properties of which are then investigated in some 
detail. We find that there is a discrete spectrum of solutions with finite lifetime in which all 
physical quantities (e.g. pressure and’energy density) remain non-singular even in the limit 
of vanishing scale factor (R + 0). Thus the universe is’created ex nihilo and subsequently 
annihilates in nihilo with the typical lifetime being quantized in units of (Mc/ f i ) - l .  This is 
just the time needed for light to cross the Compton wavelength of the Dirac particle. 
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To begin with the ‘ground state’ of the discrete spectrum, note that the energy- 
momentum density T,, of the matter for a FRW universe must have the following specific 
form (‘cosmological principle’ [9]): 

T,, =Mb,bp -Pa,, (4) 
where the derivative of the Hubble flow vector 6, is proportional to its orthogonal projector 
a,,, according to the high symmetry of such a universe: 

(3 
Now it has been shown recently 13, 61 thar such a tensor T,, with homogeneous energy 
density M and pressure P can be generated by a Dirac spinor field q only in an open 
universe. The corresponding result is [3, 81 

7i 
V,bu = HBKV H - . R 

cosx M c  
M = 3hcp (z + ?i;) 

cos x P = h c p -  
2 R  . 

Here, both thermodynamic state functions M and P have been expressed in terms of the 
scale factor R, the scalar density p = $@ of the spinor field 9 and the relative phase angle 
x between the positive and negative energy components [6]. Because of the universe’s 
homogeneity, all dynamical variables ( M ,  P, R, p .  x}  are functions exclusively of cosmic 
time r ,  where energy conservation implies 

For an equation of state of the form 

P = B M  
the solution to (8) for constant coefficient ,5 is 

3(1+PB) 
M = M ,  (2) 

which yields 
3 

M = M , ( ~ )  

for a matter-dominated universe ( p  = 0) and 
4 

M = M , ( ~ )  

for a radiation-dominated universe ( B  = f ) .  However, for the exotic value ,5 = -1 
equation (10) leads to a time-independent energy density (M,) and the energy-momentum 
density T,, (4) acquires the form of a cosmological constant: 

‘*’T,, = M, g,, . (13) 
Clearly, the thermodynamic coefficient p will in general not be a constant for the 

present Dirac-Einstein model. Nevertheless, we assume ,6 = -1 as an ansatz for obtaining 
the desired ground state. From equations (6) and (7), this ansatz readily yields 

(14) 
cosx m 

R 2 
- = -- 
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where 

is the Compton wavelength. On the other hand, Dirac’s equation (1) for the wavefunction 
@ may be transcribed into equations of motion for the phase angle x and scalar density p ,  
[3, 81: 

(16) 
cosx ’ 

+ 2  dt 
sin x dp H 

- -p=3-p+3p-  
d t  m r (17) (t  := mr, r := m R )  . 

The obvious non-singular solution satisfying constraint (14) is 
n t  
2 2  X ( t )  = -+ - .  

Thus, from (14) the (rescaled) scale factor is 

r ( t )  =2sinC (19) 2 
and the lifetime ( I L  = msL) of the ‘ground-state’ universe is (‘)tL = 2n. Unfortunately, 
since the corresponding scalar density p = $@(E R - 3 ~ )  must be time independent, it 
cannot be determined in this special case from its equation of motion (17). Therefore, 
we have to~resort to the Einstein equations (2), which in terms of the rescaled quantities 
f = mr, r = m R ,  p = pR3, q = mL,, and k,  = h,m- 4 become 

r 

i 2 = 1 + 8 n q  - - + i) + z q z k , r 2 .  
’ j L  ( r 3 

For the ‘ground-state’ solutions, (18) and (19) yield 

and so the constant value of the scalar density p is 

p =~-- 3m3 (1 + F q ’ k , )  
872qz 

Since p is required to be positive, the cosmological constant must satisfy 
3 

32xq2 ’ 
k,  i -- 

This result exemplifies the non-singularity of the ejlergy density M (6) and pressure 
P (7) of the solutions to the coupled Dirac-Einstein equhtions (1) and (2), as opposed to the 
analogous singular (R + 0) results. equations (11) and/(l2), for the standard cosmological 
model. Clearly, the present result is a sufficient 
solutions, which behave near the universe’s 

to look for further non-singular 

? I t  

2 2  
x ( t )  = - + -+  .. 

? 

H 
p ( f )  = pet‘ + . . . 
r ( t )  = f + -q2(pc + 4k*)t’ + ’ 

9 
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Similar behaviour applies near its death (t -+ tL). Observe here that the ground-state 
solution (18), (19) and (22) fits into this scheme provided the integration constant pc adopts 
its ground-state value 
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Thus, our problem is to look for the ‘higher excited states’ with values (n)pc of the 
‘initial particle number’ pLc such that the energy density M (6) and pressure P (7) both 
remain finite for the whole lifetime 0 < f <(n) tL. Obviously, the non-singularity conditions 

ii 3x 
2 2 x(0) = - mod 2x x ( t r )  = - mod 2x 

act as a kind of quantization condition which selects the discrete values (“)pc from the 
continuous range 0 < pc < CO. The initial particle number pc may be considered as a 
‘coordinate’ parametrizing the one-dimensional manifold of solutions according to (25)- 
(27). Consequently, the non-singular solutions constitute a discrete subset of this manifold. 

In this paper we investigate the excited states of ‘low order’, but in order to do so 
we must first define the notion of ‘order’ for the expected discrete spectrum of solutions. 
Intuitively, one would like to count the discrete subset (n)pc simply by n = 0, 1,2, 3, . . . . 
However, as we shall see, one needs to introduce more than a single ‘quantum number’ n. 

I / l \ I ~ I , , I  I I I I I I I  

0 2 4 6 8 10 12 14 16 18 
Cosmic Time t 

Figure 1. Ground-state and excitations. The non-singular excitations of the ground state (19) 
(full curve) exhibit some regular features. e.g. the number of bounces (0. 1. 2) or the lifetimes 
1 ~ ( =  k, F;: 4rr. Ee 6r). indicating the existence of Some classification scheme. The bold dots 
symbolize the universe’s creation and annihilation 0 = 0). Parameters used in this figure are 
shown in table 1. 

Table 1. Parameters used in figure 1. 

Full Dotted Broken 

Ir, 1.0 1.0 1.0 
0’ 0.29841 ... 0.408632 ... 0.247545 
k. -0.4 -0,5842223... -0.9643982... 
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2. Topological classes 

Figure 1 shows three non-singular (numerical) solutions to the coupled Dirac-Einstein 
system (16), (17), (ZO), (21). The corresponding lifetimes are exactly 2n for the ground 
state (19) and approximately 4n and 61r for the excited states. By analogy with well known 
problems in elementary quantum mechanics (e.g. the square well potential or harmonic 
oscillator), one might anticipate that the present Dirac-Einstein solutions could be classified 
by the number of bounces occurring during their lifetime. The lifetime apparently correlates 
strongly with the bounce number. With this assumption, figure 1 would exhibit the three 
lowest-order solutions n = 0, 1, 2. However, can we be sure that continuously varying the 
parameters q and k ,  in the Dirac-Einstein equations does not change the number of bounces 
for a non-singular solution satisfying (29)? Evidently, we need a topological invariant such 
that any solution with finite lifetime remains in its ‘topological class’ during continuous 
variation of the parameters q ,  k, ,  pC. 

For obtaining the appropriate topological criterion, it is better to look at the x / t  diagram 
(figure 2). In the ground state, the phase angle x has the value n just once, in the ‘first 
excited state’ three times, in the ‘nth excited, state’ it does so 2n + 1 times. Is the number of 
n crossings a topological invariant and thus suited for establishing a classification scheme? 
Fortunately yes, because in continuously deforming a solution with (2n + ‘ l )  a-passages 
into one with (2n - 1) n-passages, one must encounter a situation where x = n and = 0 
simultaneously. But this is forbidden by equations (16) and (21), provided 

~~ .~ (30) 
1 

6 n  
q’k, < 

In this case, the n(mod &)-passage number nn (= 1,3,5. .,. .) is a good quantum number 
and may be used as a classification criterion. (During our numerical integrations, we never 
observed a breakdown of this classification, even when condition (30) did not hold.) One 
can easily show that nn is the number of times the particle number p(f)  := p’R3 attains 
a maximum (ji = 0). Unfortunately, the number of maxima turns out to be insufficient 
to establish a unique classification of the discrete spectrum and there is need for a further 
quantum number. 

, 

Y 0.5 
E 
f - 

0.0 
0 2 4 6 8 10 12 I4 I6 18 

Cormis Time t 

Figure 2. Passage number nn.  The number nn of times when x has the value r ( m o d 2 r )  is 
an invariant under continuous variation of q,  k,. &, along lin A.  For the solutions of figure 1, 
nn = 1, 3,5. The ground state (full curve) has n n  = 1. The initial and final values for the 
phase x are kept fixed throua the non-singularity condition (29). 
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3. Phase jumping 

Evidently, the common feature of the solutions shown in figures 1 and 2 is the restriction 
of the variation of the phase angle x to the domain < x < F. However, as 
indicated by figure 3, there exist solutions for which the angle x leaves this domain 
and jumps in a relatively short time first to the domain < x < $, and then to 
the domain < x < 11.7. It is a striking fact that the phase can stay for long time 
in the ‘allowed bands’ ( T z  < x < Yz), whereas it crosses the intermediate bands 
( y z  4 x < y r )  very rapidly. As the corresponding r / t  diagram (figure 4) shows, 
such ‘phase jumps’ occur whenever the scale factor r tends to zero without the phase angle 

U Ochs and M Sorg 

Znsl 

0 5 10 15 20 25 
Co=mic Timo t 

Figure 3. Phasejumping. Transitions of the angle x to a neighbouring allowed band are possible 
and generate different solutions w i h  the same number nn  (full and dotted curves: nn = 3). 
But with respect to the quantum configuntion (nn. nn) 311 solutions are discemible: full cume: 
(nn = 3 , n ~  = 5). dotted curve: (nn = 3 . n ~  = 1). broken cume: (nn = 7 , n ~  = 1). The 
universe’s lifetime roughly correlates with the sum nn +na. 

0 5 10 15 20 25 

0.0- ~~ . 
0 5 10 15 20 25 

Cosmic Time t 

Figure 4. Second quantum number I I A .  The two solutions of figure 3 with the some topological 
number nn = 3 (full and dotted curve) ace different, e.g. the lifetimes zue f~ 0 4ir (dotted) and 
f~ 0 6n (full). This difference~is expressed in the second quintum number n~ (full: nA = 5 ;  
dotted nA = 1). 
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x satisfying the non-singularity condition (29). As a consequence, the phase jumps over to 
the neighbouring allowed band and @ies to produce a non-singular collapse in that domain. 
The reason for this peculiar behaviour is readily seen from the equation of motion for x 
(equation (16)): if a collapse occurs (r + 0) with the phase x not satisfying condition (29), 
but lying in an intermediate band (cos x > O), then equation (16) predicts a large angular 
velocity ( x  >> 1) resulting in a quick traversal of the intermediate band. Evidently the 
quicker the jump, the harder the bounce (see figure 4). 

A consequence of phase jumping is that the topological number nn introduced above 
is too coarse, i.e. we encounter different solutions with the same number nn (cf figures 3 
and 4). Therefore, in order to refine our classification, we have to introduce a further 
topological number. To this end, we exploit the non-singularity condition (29) and define a 
new quantum number 

The solutions of figures 3 and 4 are now distinguished by their quantum numbers (nn ,  n A )  

(figure 3). 

4. Asymmetric solutions 

So far we have only considered timesymmetric solutions, i.e. there always existed an instant 
t* such that r(r* - T )  = r(r, + T )  with t* = rL/2 and 0 < T < rL/2. (This also holds 
for the particle number &).) The question arises of whether the coupled Dirac-Einstein 
system also admits asymmetric solutions? 

In order to answer this question, it is convenient to consider the two-dimensional 
parameter space p = [b ,  6) with b := [k*l-'pc, := $&J. The set of all points 
6 = (b, 6) E p in this 2-space for which a non-singular solution (i) exists forms a subset 
d = I?} which is the union of the corresponding subclasses containing all the (Fn.A) 

P.r.mclcr * 
Figure 5. The non-singular class i 1 . 1 .  %e sei I?!,, is connected in p and admits a 
continuous deformation of my member i1.1 E R1.l into the ground state (19). whose parameter 
curve (O'i.  = ('):(?) is given by equation (32). The choice of the representative points 
for the route A. E.C.  D . E .  F is: i n  = (1.916525 ..., 10.0), i s  = (1.916483 ..., 1.0152). 
i c  = (1.916227 .... 0.31, i~ = ~2.111.0.1100985 . . .  ), FE = (2.3675. 1.347856 ... ), i~ = 
(2.63793 ._., 10.0). 
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I . o  , , , , , ,  , , , , ',: j 
0 1 2 3 I S 6 7  

(armis Time t Cosmic Time L 

Figure 6. Asymmetric solutions r(r).  The lefl branches A ,  B.  C, .  . . of & I  contain the 
asymmetric solutions. with the exception of the intersection of such a branch with the ground 
slate curve (32). The right branches D. E .  F . .  . consist of strictly symmetric solurions. Note 
that Ihe lifetime of the asymmerric solutions is nor changed. 

- - 
solutions: R = U n , a R n , ~ .  For the discussion of the asymmetry problem, we restrict 
ourselves to the simplest class (nn = I ,  ?zA = 1) which contains the ground state (equation 
(19)). The corresponding parameter manifold 81.1 is exhibited in figure S. 

Evidently, 81.1 is a connected one-dimensional subset of the parameter space P. 
Consequently, we can join any solution il,, E k1 to the symmetric ground state (19) 
by continuous variation of the parameters (p, ?j), but this does not imply that 81.1 only 
contains symmetric solutions. A simple counterexample is characterized by taking the route 
A -+ B + C -+ D -+ E -+ F in figure S. The corresponding solutions rA(t)  . . . r&) for 
the scale factor r are shown in figure 6, from which the result can easily be read off: for the 
left branch C, B,  A , .  . . the solutions are asymmerric, whereas the right branch D, E ,  F, . . . 
contains the symmetric solutions. Clearly, whenever some branch of 11.1 intersects with 
the ground-state branch (28): 

CO!, = (4 - $) (32) 

then a symmetric solution is encountered. Observe also the different kind of asymmetry for 
f i  z(O)fi and p d0)fi in the left branch.. . A ,  B ,  C. 

We have restricted here our discussion to the lowest order class RI,, because the higher 
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classes & . A  with nn > 1, n A  z 1 are no longer connected and exhibit a very complicated 
fractal structure (to be investigated in a separate paper). 

5. Abundance ratio of the quantum numbers n n  

It should be clear from the preceding discussion that there is no restriction on the second 
quantum number nh. so we can envisage non-singular solutions with a large value for nA. 
This means that the phase angle x traverses a large number of allowed.bands ( n A  >> 1). 
On the other hand, the first number nn can never be smaller than the second number n A ,  

so we must also have a large value for nn (as an example of such a solution see figure 7) .  
Since nn may be considerably larger than nA, there arises the question of how the passage 
numbers nn are distributed over the allowed bands. 

Cosmic Time f 

Figure 7. Solutions with large quanrum numbers. For long-lived universes (here tr. % 2063). 
ihe quanrum numbers nn, nn sre arbitrarily large. The solution has nn = 513, na = 297, 
where the maximal value of nn per allowed band is = 9. The minimal value is always~ 
(nn)min = 1 .  

A numerical investigation of this question reveals, that for any solution there is a 
preferred abundance of nn per band, where the preferred value may differ from one solution 
to another. Two typical situations are encountered in figures 8 and 9. In the case of figure 8, 
the nn exhibits two preferred values per band, namely 1 and 13; in the case of figure 9 one 
finds the single preferred value nn = 1 and the relative abundance of higher nn decreases 
monotonically. 

Whether the band number nn  has a regular or chaotic distribution is strongly related to 
the problem of matter production in the early universe. It has been shown [5]  that matter 
production through Dirac’s spinor field can occur only during the short time interval when 
the scale factor of the universe is close to minimal, i.e. during the bounce. However, the 
Dirac-Einstein system predicts that matter annihilation is equally possible during that shod 
time interval. The reason is that (8) requires the pressure P (7)  and the expansion rate H 
to have different signs in order that matter be produced. Since the expansion rate is always 
positive in a forbidden band, matter can be produced only in the allowed bands, preferably 
in the vicinity of x = a during a bounce. However, when the time behaviour during the 
bounce is completely symmetric with respect to x = a,  the matter produced shortly before 
the bounce (x < a )  is annihilated again shortly after the bounce (x 2 a )  [4]. Consequently, 
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17 

C l 3  
t a 
- 9  1 
i 

5 

I 
0 4 8 I2 16 20 24 28 32 36' 

b u d  mumbar ,mumm n w a k  % 

Figure 8. Relative abundance of the band number n x .  "he number of n passages (mod 211) in 
any band fluctuates irregulmly (a )  but the statistical analysis (b) reveals the occurrence of my0 
preferred values. nT = 1 and n, = 13. 

~~ f 1 9 0.3 0.2 

5 $ 0.1 

0.0 

.* n n k r  ,Y.aL"m .".b.r n, 
80 100 I20 I40 I 3  5 7 9 1 1 1 3 1 5  

Figure 9. Statistics of the band number n,. The quantum number n, per band may obey quite 
different types of statistics far different solutions. In conmast to the solution of hgure 8. there 
is a single preferred value for n,, namely nT = 1. Higher values of nT we unlikely. 

when the bounces occur chaotically, one expects matter production to be of equal strength 
to matter annihilation for a large number of bounces. However, if one could find some 
statistical regularity for the bounces,~then one could infer that the matter content of the 
universe built up through continuous bouncing; the reason is that the matter-producing 
bounces had some statistical dominance over the matter-annihilating bounces. Note that 
the question of matter production is closely related to the maximal size of the universe: 
the greater the particle number p the greater the maximal scale factor r ,  cf Einstein's 
equation (21). A more thorough analysis of the chaotic properties of the Dirac-Einstein 
system (16). (17); (20), (21) would now appear desirable. 
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